Unbalanced Gromov-Wasserstein distance

Thibault Séjourné SMAI Minisymposium – 24th June, 2021

Joint work with Francois-Xavier Vialard, Gabriel Peyré, Jean Feydy and Alain Trouvé

Introduction

Real world motivation: aligning genomic data¹

Aligning RNA data

Data is:

- Heterogeneous (≠ dimensions)
- imbalanced

 \Rightarrow Need for adaptive and robust (yet meaningful) assignments !

¹Demetci, Pinar, et al. Gromov-Wasserstein optimal transport to align single-cell multi-omics data.

Optimal transport displays three restrictions:

- Compares measures with same mass,
- Compares measures defined on the same space,
- Scales poorly in numerical solvers : $O(n^3 \log(n))$.

There exists extensions to overcome these issues:

- Unbalanced optimal transport,
- Gromov-Wasserstein distances,
- Entropic regularization.

- 1. Background UOT (\bullet)
- 2. Sinkhorn algorithm (\bullet + \bullet)
- 3. Unbalanced Gromov-Wasserstein (+)
- 4. Implementation of UGW (\bullet + \bullet + \bullet)

Unbalanced OT

Several models for measures, most commonly pointclouds.

Measure $\alpha = \sum_{i} \alpha_{i} \delta_{x_{i}}$. Mass $m(\alpha) = \sum_{i} \alpha_{i}$.

Important example: Gaussian densities in \mathbb{R} with $\alpha \propto \sum_i p(x_i) \delta_{x_i}$

- $\beta = mixture 70/30$
- $\alpha = \text{mixture } 40/60$

Optimal Transport (OT)

Balanced Optimal Transport Distance²

$$\mathsf{OT}(\boldsymbol{\alpha},\boldsymbol{\beta}) \stackrel{\text{\tiny def.}}{=} \min_{\boldsymbol{\pi} \geq 0} \left\{ \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} : \begin{array}{c} \pi \mathbf{1} = \boldsymbol{\alpha} \\ \pi^{\top} \mathbf{1} = \boldsymbol{\beta} \end{array} \right\}$$

Called p-Wasserstein distance for $C = d^p$.

Intuition: Moving π_{ij} grams from x_i to y_j costs $\pi_{ij} \times C_{ij}$. **Choice of C** \rightarrow Choice of geometric prior.

²Kantorovich, L. (1942). On the transfer of masses (in Russian).

Unbalanced OT

Idea: Soften the constraint $\pi 1 = \alpha$ $\rightarrow \text{KL}(\pi 1 | \alpha) = \sum_{i} \log(\frac{\pi_{1,i}}{\alpha_{i}}) \alpha_{i} - m(\pi 1) + m(\alpha)$ Definition - Unbalanced OT³ For any positive measures (α, β) one defines $\text{UOT}_{\rho}(\alpha, \beta) = \inf_{\pi \geq 0} \mathcal{L}_{\text{UOT}}(\pi)$ where $\mathcal{L}_{\text{UOT}}(\pi) \stackrel{\text{def.}}{=} \sum_{i,j} \text{C}_{ij}\pi_{ij} + \rho \text{KL}(\pi 1 | \alpha) + \rho \text{KL}(\pi^{\top} 1 | \beta).$

- 2 choices: transport vs create/destroy
- Other penalties: TV, or Csiszàr div D_{φ} .
- Balanced $OT = \rho \rightarrow \infty$ or $D_{\varphi} = \iota_{(=)}$.

³Liero, M., Mielke, A., & Savaré, G. (2018). Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures.

Entropic Optimal Transport

Regularization of OT

Reminder: OT is computationally expensive.

Idea: Add an entropic penalty $\varepsilon \text{KL}(\pi | \alpha \otimes \beta)$.

Entropic Unbalanced OT^{4 5}

$$\mathsf{JOT}_{\varepsilon,\rho}(\boldsymbol{\alpha},\boldsymbol{\beta}) \stackrel{\text{\tiny def.}}{=} \inf_{\pi \ge 0} \sum_{i,j} \mathsf{C}_{ij}\pi_{ij} + \rho \mathrm{KL}(\pi 1 | \boldsymbol{\alpha}) + \rho \mathrm{KL}(\pi^{\top} 1, \boldsymbol{\beta}) \\ + \varepsilon \mathrm{KL}(\pi | \boldsymbol{\alpha} \otimes \boldsymbol{\beta})$$

⁴Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport.

⁵Chizat, L., Peyré, G., Schmitzer, B., & Vialard, F. X. (2018). Scaling algorithms for unbalanced optimal transport problems.

Duality of regularized Balanced OT

The dual for $UOT_{\varepsilon,\rho}$ reads

$$\begin{aligned} \mathsf{UOT}_{\varepsilon,\rho}(\alpha,\beta) &= \sup_{f,g} \sum_{i} \rho(1 - e^{-f_i/\rho}) \alpha_i + \sum_{j} \rho(1 - e^{-g_j/\rho}) \beta_j \\ &- \varepsilon \sum_{i,j} (e^{\frac{f_i + g_j - C_{ij}}{\varepsilon}} - 1) \alpha_i \beta_j. \end{aligned}$$

We consider **alternate dual ascent** to compute $UOT_{\varepsilon,\rho}$:

Alternate dual ascent

Given any initialization f_0 . At time t one has (f_t, g_t) . Then iterate until convergence:

- 1. Fix f_t and find optimal g in the dual $\rightarrow g_{t+1}$,
- 2. Fix g_{t+1} and find optimal f in the dual $\rightarrow f_{t+1}$.

Duality of regularized Balanced OT

The dual for $UOT_{\varepsilon,\rho}$ reads

$$\begin{aligned} \mathsf{UOT}_{\varepsilon,\rho}(\boldsymbol{\alpha},\boldsymbol{\beta}) &= \sup_{f,g} \sum_{i} \rho(1 - e^{-f_i/\rho}) \boldsymbol{\alpha}_i + \sum_{j} \rho(1 - e^{-g_j/\rho}) \boldsymbol{\beta}_j \\ &- \varepsilon \sum_{i,j} (e^{\frac{f_i + g_j - \mathsf{C}_{ij}}{\varepsilon}} - 1) \boldsymbol{\alpha}_i \boldsymbol{\beta}_j. \end{aligned}$$

Unbalanced Sinkhorn algorithm = Alternate dual ascent

$$\begin{split} f_i &\leftarrow \frac{\rho}{\varepsilon + \rho} \Big[-\varepsilon \log \sum_j e^{(g_j - \mathsf{C}_{ij})/\varepsilon} \beta_j \Big], \\ g_j &\leftarrow \frac{\rho}{\varepsilon + \rho} \Big[-\varepsilon \log \sum_i e^{(f_i - \mathsf{C}_{ij})/\varepsilon} \alpha_i \Big]. \end{split}$$

Rmk: Solve dual \Rightarrow Solve primal: $\pi_{ij}^* = \exp((f_i^* + g_j^* - C_{ij}/\varepsilon)\alpha_i\beta_j)$.

Balanced Gromov-Wasserstein distance

mm-space: $\mathcal{X} = (X, d^{(X)}, \alpha)$ with $(X, d^{(X)})$ complete separable, α positive measure

Definition - GW distance⁶

Take $\mathcal{X} = (X, d^{(X)}, \boldsymbol{\alpha})$ and $\mathcal{Y} = (Y, d^{(Y)}, \boldsymbol{\beta})$ equipped with **probabilities**. One defines $GW(\mathcal{X}, \mathcal{Y}) = \inf_{\{\pi 1 = \boldsymbol{\alpha}, \pi^{\top} 1 = \boldsymbol{\beta}\}} \mathcal{G}(\pi)$ where

$$\mathcal{G}(\pi) \stackrel{\text{\tiny def.}}{=} \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl}.$$

⁶Mémoli, F. (2011). Gromov–Wasserstein distances and the metric approach to object matching.

The GW distances encodes an equivalence relation of isometry.

Isometric mm-spaces

Def:
$$\mathcal{X} \sim \mathcal{Y} \Leftrightarrow \exists \psi : X \to Y$$
 bijective isometry s.t.
 $d_X(x, x') = d_Y(\psi(x), \psi(x'))$ and $\beta = \sum_i \alpha_i \delta_{\psi(x_i)}$
Prop: With $\lambda(t) = t^q$, $GW^{\frac{1}{q}}$ distance and definite iff $\mathcal{X} \sim \mathcal{Y}$

Two key differences with OT

- GW is non-convex (quadratic assignment program)
- $(\mathcal{X}, \mathcal{Y})$ can differ radically in nature.⁷

⁷Solomon, J., Peyré, G., Kim, V. G., & Sra, S. (2016). Entropic metric alignment for correspondence problems.

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_{UGW}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1, \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2, \beta \otimes \beta).$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl},$$
$$\mathcal{L}_{UOT}(\pi) = \sum_{i,j} \mathsf{C}_{ij} \pi_{ij} + \rho \mathsf{KL}(\pi_1, \alpha) + \rho \mathsf{KL}(\pi_2, \beta).$$

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_{UGW}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(\mathcal{X})} - d_{jl}^{(\mathcal{Y})} \right)^2 \pi_{ij} \pi_{kl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1 | \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2 | \beta \otimes \beta).$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl},$$
$$\mathcal{L}_{\text{UOT}}(\pi) = \sum_{i,j} C_{ij} \pi_{ij} + \rho \text{KL}(\pi_1 | \alpha) + \rho \text{KL}(\pi_2 | \beta).$$

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_{UGW}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1 | \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2 | \beta \otimes \beta).$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl},$$
$$\mathcal{L}_{\text{UOT}}(\pi) = \sum_{i,j} C_{ij} \pi_{ij} + \rho \text{KL}(\pi_1 | \alpha) + \rho \text{KL}(\pi_2 | \beta).$$

Define the tensor product of measures $(\pi \otimes \pi)_{ijkl} \stackrel{\text{\tiny def.}}{=} \pi_{ij}\pi_{kl}.$

Definition

One defines
$$UGW(\mathcal{X}, \mathcal{Y}) = \inf_{\pi \ge 0} \mathcal{L}_2(\pi)$$
 where
 $\mathcal{L}_{UGW}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl} + \rho \mathrm{KL}(\pi_1 \otimes \pi_1 | \alpha \otimes \alpha) + \rho \mathrm{KL}(\pi_2 \otimes \pi_2 | \beta \otimes \beta).$

$$\mathcal{G}(\pi) = \sum_{i,j,k,l} \left(d_{ik}^{(X)} - d_{jl}^{(Y)} \right)^2 \pi_{ij} \pi_{kl},$$
$$\mathcal{L}_{\text{UOT}}(\pi) = \sum_{i,j} C_{ij} \pi_{ij} + \rho \text{KL}(\pi_1 | \alpha) + \rho \text{KL}(\pi_2 | \beta)$$

Numeric in dimension 1

Balanced OT

UOT-KL

Take home message

1 to 1

 $1 \text{ to } 1 \oplus \text{reweighting}$

1 to 1 \oplus isometry

1 to 1 \oplus isom. \oplus rew.

We can enrich assignments with a variety of priors.

Theoretical results and conic formulation

- UOT is not convenient to prove the triangle inequality.
- Need to use another formulation called "conic" (COT)
- $ightarrow \operatorname{COT} = \operatorname{OT}$ on a lifted space $\mathfrak{C} = X imes \mathbb{R}_+$
 - Thm 1: UOT is definite.
 - Thm 2: COT is a distance between positive measures.
 - Thm 3: One has UOT = COT.

Theorem [S., Vialard, Peyré]

- 1. UGW is definite up to isometries.
- 2. There exists a conic formulation CGW which is a distance between mm-spaces up to isometry.
- 3. One has UGW \geq CGW.

Implementation of UGW and experiments

Idea: Entropic regularization + alternate minimization

$$\begin{aligned} \mathsf{UGW}_{\varepsilon}(\mathcal{X},\mathcal{Y}) &\stackrel{\text{def.}}{=} \inf_{\pi \geq 0} \mathcal{L}_{\mathsf{UGW}}(\pi) + \varepsilon \mathrm{KL}(\pi \otimes \pi, (\boldsymbol{\alpha} \otimes \boldsymbol{\beta})^{\otimes 2}) \\ &\geq \inf_{\pi, \gamma \geq 0} \mathcal{F}(\pi, \gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma, (\boldsymbol{\alpha} \otimes \boldsymbol{\beta})^{\otimes 2}), \end{aligned}$$

where $\mathcal{F}(\pi, \gamma) \stackrel{\text{def.}}{=} \sum_{i, j, k, l} \left(d_{ik}^{(\mathcal{X})} - d_{jl}^{(\mathcal{Y})} \right)^2 \pi_{ij} \gamma_{kl} \\ &+ \rho \mathrm{KL}(\pi_1 \otimes \gamma_1, \boldsymbol{\alpha} \otimes \boldsymbol{\alpha}) + \rho \mathrm{KL}(\pi_2 \otimes \gamma_2, \boldsymbol{\beta} \otimes \boldsymbol{\beta}) \end{aligned}$

Proposition - alternate descent \leftrightarrow solve UOT

For a fixed γ , $\pi \in \arg\min_{\pi} \mathcal{F}(\pi, \gamma) + \varepsilon \mathrm{KL}(\pi \otimes \gamma | (\alpha \otimes \beta)^{\otimes 2})$ is the solution of

$$\begin{split} \min_{\pi} \; \sum_{i,j} \tilde{\boldsymbol{c}}_{ij} \pi_{ij} + \tilde{\rho} \mathrm{KL}(\pi_1 | \boldsymbol{\alpha}) + \tilde{\rho} \mathrm{KL}(\pi_2 | \boldsymbol{\beta}) \\ &+ \tilde{\varepsilon} \mathrm{KL}(\pi | \boldsymbol{\alpha} \otimes \boldsymbol{\beta}), \end{split}$$

where $(\tilde{c}, \tilde{\rho}, \tilde{\varepsilon})$ depend on the fixed measure γ via a computable formula.

Back to genomic data alignment⁸

From Demetci et al.

- GW reaches state of the art performance for RNASeq data.
- UGW improves the classification performance over GW.
- See rsinghlab/SCOT on Github.

^oDemetci, Pinar, et al. Gromov-Wasserstein optimal transport to align single-cell multi-omics data.

Application - Positive Unlabeled learning

- Domain adaptation = Propagate labels on a similar dataset.
- PU learning = supervised learning but we learn from only one class.
- Idea: Use a transport plan to map positive samples to unlabeled positive ones.

Performance results

Dataset	prior	Init (PW)	PGW	UGW	Dataset	prior	Init (FLB)	PGW	UGW
$surf-C \rightarrow surf-C$	0.1	89.9	84.9	83.9	$surf\text{-}C\todecaf\text{-}C$	0.1	85.0	85.1	85.6
$surf\text{-}C\tosurf\text{-}A$	0.1	81.8	82.2	83.5	$surf\text{-}C\todecaf\text{-}A$	0.1	84.2	87.1	83.6
$surf\text{-}C\tosurf\text{-}W$	0.1	81.9	81.3	80.3	$surf\text{-}C\todecaf\text{-}W$	0.1	86.2	88.6	86.8
$surf\text{-}C\tosurf\text{-}D$	0.1	80.0	81.4	83.2	$surf\text{-}C\todecaf\text{-}D$	0.1	84.7	91.1	90.7
$surf-C \rightarrow surf-C$	0.2	79.7	75.7	75.4	$surf\text{-}C\todecaf\text{-}C$	0.2	74.8	75.6	75.9
$surf\text{-}C\tosurf\text{-}A$	0.2	65.6	66.0	76.4	$surf\text{-}C\todecaf\text{-}A$	0.2	76.2	87.9	82.4
$surf\text{-}C\tosurf\text{-}W$	0.2	65.1	64.3	67.3	$surf\text{-}C\todecaf\text{-}W$	0.2	81.5	88.4	89.9
$decaf\text{-}C\todecaf\text{-}C$	0.1	93.9	83.0	86.8	$decaf\text{-}C\tosurf\text{-}C$	0.1	81.7	81.0	81.1
$decaf\text{-}C\todecaf\text{-}A$	0.1	80.1	81.4	85.6	$decaf\text{-}C\tosurf\text{-}A$	0.1	80.9	81.2	82.4
$decaf\text{-}C\todecaf\text{-}W$	0.1	80.1	82.7	86.1	$decaf\text{-}C\tosurf\text{-}W$	0.1	82.0	81.3	83.5
$decaf\text{-}C\todecaf\text{-}D$	0.1	80.6	83.8	83.4	$decaf\text{-}C\tosurf\text{-}D$	0.1	80.0	80.8	81.5
$decaf\text{-}C\todecaf\text{-}C$	0.2	90.6	76.7	80.5	$decaf\text{-}C\tosurf\text{-}C$	0.2	66.6	63.7	65.2
$decaf\text{-}C\todecaf\text{-}A$	0.2	62.5	68.7	74.7	$decaf\text{-}C\tosurf\text{-}A$	0.2	62.9	62.4	69.3
$decaf\text{-}C\todecaf\text{-}W$	0.2	65.7	75.9	79.2	$decaf\text{-}C\tosurf\text{-}W$	0.2	65.1	61.4	83.3

Table 1: Accuracy for all tasks. The left block are domain adaptation experiments with similar features, where both PGW and UGW are initialised with PW. The right block are domain adaptation experiments with different features, and the reported init is FLB used for UGW.

- Flexibility of UOT models through $(C, \rho, \varepsilon) + KL \rightsquigarrow D_{\varphi}$
- Blending of UOT with GW distances
- Computations on GPUs \rightarrow UGW
- Theoretical aspects \rightarrow CGW distance
- $UOT_{\varepsilon,\rho}$ is fast to compute but lost OT properties,
- Possible to "debias" $UOT_{\varepsilon,\rho}$ to retrieve some of them.
- Open question: Can we debias UGW_e? Which properties ?

Implementations - github repositories

- thibsej/unbalanced-ot-functionals
- jeanfeydy/geomloss
- thibsej/unbalanced_gromov_wasserstein

References

- Feydy, J., Séjourné, T., Vialard, F. X., Amari, S. I., Trouvé, A., & Peyré, G. (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences.
- Séjourné, T., Feydy, J., Vialard, F. X., Trouvé, A., & Peyré, G. (2019). Sinkhorn Divergences for Unbalanced Optimal Transport.
- Séjourné, T., Vialard, F. X., & Peyré, G. (2020). The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation.

Thank you !

Correcting the entropic bias -Sinkhorn divergence

Entropic bias

Problem: $\mathcal{L} = OT_{\varepsilon}$ does not retrieve β for $\varepsilon > 0$.

Not a distance: $\mathsf{OT}_{\varepsilon}(\alpha, \alpha) > 0$, $\exists \alpha \in \mathcal{M}_{1}^{+}(\mathcal{X}), \mathsf{OT}_{\varepsilon}(\alpha, \beta) < \mathsf{OT}_{\varepsilon}(\beta, \beta).$

 \Rightarrow One cannot crossvalidate the parameter ε .

Unbalanced Sinkhorn Divergence

Definition

Setting $m(\mu) = \sum_{i} \mu_{i}$, we define $S_{\varepsilon,\rho}(\alpha,\beta) \stackrel{\text{def.}}{=} \text{UOT}_{\varepsilon,\rho}(\alpha,\beta) - \frac{1}{2}\text{UOT}_{\varepsilon,\rho}(\alpha,\alpha) - \frac{1}{2}\text{UOT}_{\varepsilon,\rho}(\beta,\beta) + \frac{\varepsilon}{2}(m(\alpha) - m(\beta))^{2}.$

It extends the balanced Sinkhorn divergence⁹¹⁰.

Remark: When $\alpha = \beta$, one has $S_{\varepsilon,\rho}(\alpha, \beta) = 0$.

Is it positive ? Definite ? Smooth ?

⁹Ramdas, A., Trillos, N. G., & Cuturi, M. (2017). On wasserstein two-sample testing and related families of nonparametric tests.

¹⁰Genevay, A., Peyré, G., & Cuturi, M. (2018, March). Learning generative models with sinkhorn divergences.

Theorem [S., Feydy, Vialard, Trouve, Peyre '19]

For any Lipschitz cost C on a compact set s.t. $k_{\varepsilon} \stackrel{\text{def.}}{=} e^{-\frac{C}{\varepsilon}}$ is a positive universal kernel, for any $\varepsilon > 0$

- S_{ε,ρ} is convex, positive, definite.
- It is (weakly) differentiable.
- One has $S_{\varepsilon,\rho}(\alpha,\beta) \to 0 \Leftrightarrow \alpha \rightharpoonup \beta$.

Corollary: holds for $C(x, y) = ||\psi(x) - \psi(y)||_2^2$, for ψ neural net.

Numerical insights on UOT and the Sinkhorn divergence

Setting adapted from [Chizat '19]¹¹.

- Position/mass parameterization $\theta = \{(x_i, r_i)_i\} \in (\mathbb{R}^d \times \mathbb{R}_+)^n$
- Model measure $\theta \mapsto \alpha(\theta) = \sum_{i}^{n} r_{i}^{2} \delta_{x_{i}}$
- Minimize $\mathcal{L}(\alpha(\theta),\beta)$ w.r.t. θ

Updates of the coordinates

$$\begin{aligned} x_i^{(t+1)} &= x_i^{(t)} - \eta_x \nabla_{x_i} \mathcal{L}(\boldsymbol{\alpha}(\boldsymbol{\theta}^{(t)}), \boldsymbol{\beta}), \\ r_i^{(t+1)} &= r_i^{(t)} \cdot \exp\left(-2\eta_r \nabla_{r_i} \mathcal{L}(\boldsymbol{\alpha}(\boldsymbol{\theta}^{(t)}), \boldsymbol{\beta})\right) \end{aligned}$$

 $^{^{11}}$ Chizat, L. (2019). Sparse optimization on measures with over-parameterized gradient descent.

Numerics - Gradient descent

Parameters: $C(x, y) = ||x - y||_2^2$ on $[0, 1]^2$, $\rho = 0.3$, $\eta_x = 60.0$, $\eta_r = 0.3$

Supplementary slides

Define $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ l.s.c., convex, $\varphi(1) = 0$, $\varphi'^{\infty} = \lim_{x \to \infty} \frac{\varphi(x)}{x}$. Write $\alpha = \sum_i \alpha_i \delta_{x_i}$ and $\beta = \sum_i \beta_i \delta_{x_i}$ (Same support (x_i))

Definition - φ -divergence

$$\mathsf{D}_{\varphi}(oldsymbol{lpha},eta) = \sum_{eta_i
eq 0} arphi(rac{oldsymbol{lpha}_i}{eta_i})eta_i + arphi'^\infty \sum_{eta_i = 0} oldsymbol{lpha}_i.$$

Examples:

- $\operatorname{KL}(\alpha, \beta) = \sum_{i} (\log(\frac{\alpha_i}{\beta_i})\alpha_i \alpha_i + \beta_i)$: $\varphi(x) = x \log x - x + 1$,
- TV $(\alpha, \beta) = \sum_i |\alpha_i \beta_i|$: $\varphi(x) = |x 1|$.

 $^{^{12}}$ Csiszár, I. (1967). Information-type measures of difference of probability distributions and indirect observation.

- Focus on $\lambda(t) = t^2$ for improved time and memory complexity
- Focus on $D_{\varphi} = KL$ which verifies

$$\begin{split} \mathrm{KL}(\mu\otimes\nu,\boldsymbol{\alpha}\otimes\beta) &= m(\nu)\mathrm{KL}(\mu,\boldsymbol{\alpha}) + m(\mu)\mathrm{KL}(\nu,\beta) \\ &+ (m(\mu) - m(\boldsymbol{\alpha}))(m(\nu) - m(\beta)). \end{split}$$

 $\Rightarrow\,$ Given $\gamma,$ minimizing w.r.t. π amounts to solve a regularized UOT problem.

Algorithm 1 – UGW(X, Y, ρ , ε)

Input: mm-spaces $(\mathcal{X}, \mathcal{Y})$, relaxation ρ , regularization ε **Output:** approximation (π, γ) minimizing $\mathcal{F} + \varepsilon KL^{\otimes}$

- 1: Initialize (π, γ) and (f, g)
- 2: while (π, γ) has not converged do
- 3: Update $\gamma \leftarrow \pi$ and compute the cost $\tilde{c} \leftarrow c^{\varepsilon,\gamma}$
- 4: Update parameters $(\tilde{\rho}, \tilde{\varepsilon}) \leftarrow (m(\pi)\rho, m(\pi)\varepsilon)$
- 5: Compute (f, g) that solves UOT $(\mu, \nu, \tilde{c}, \tilde{\rho}, \tilde{\varepsilon})$

6: Update
$$\gamma_{ij} \leftarrow \exp \left| (f_i + g_j - \tilde{c}_{ij}) / \tilde{\epsilon} \right| \frac{\alpha_i \beta_j}{\alpha_i \beta_j}$$

7: Rescale
$$\gamma \leftarrow \sqrt{m(\pi)/m(\gamma)}\gamma$$

8: Return (π, γ) .

Detailed algorithm

Algorithm 2 – UGW(X, Y, ρ , ε)

Input: mm-spaces $(\mathcal{X}, \mathcal{Y})$, relaxation ρ , regularization ε **Output:** approximation (π, γ) minimizing $\mathcal{F} + \varepsilon KL^{\otimes}$

- 1: Initialize $\pi = \gamma = \mu \otimes \nu / \sqrt{m(\mu)m(\nu)}$, g = 0.
- 2: while (π, γ) has not converged do

3: Update
$$\pi \leftarrow \gamma$$
, then $c \leftarrow c_{\pi}^{\varepsilon}$, $\tilde{\rho} \leftarrow m(\pi)\rho$, $\tilde{\varepsilon} \leftarrow m(\pi)\varepsilon$

4: while (f, g) has not converged **do**

5:
$$\forall x, f(x) \leftarrow -\frac{\tilde{\varepsilon}\tilde{\rho}}{\tilde{\varepsilon}+\tilde{\rho}} \log\left(\int e^{(g(y)-c(x,y))/\tilde{\varepsilon}} \mathrm{d}\nu(y)\right)$$

6:
$$\forall y, g(y) \leftarrow -\frac{\tilde{\varepsilon}\tilde{\rho}}{\tilde{\varepsilon}+\tilde{\rho}} \log\left(\int e^{(f(x)-c(x,y))/\tilde{\varepsilon}} d\mu(x)\right)$$

7: Update
$$\gamma(x, y) \leftarrow \exp\left[(f(x) + g(y) - c(x, y))/\tilde{\varepsilon}\right] \mu(x)\nu(y)$$

8: Rescale
$$\gamma \leftarrow \sqrt{m(\pi)/m(\gamma)}\gamma$$

9: Return (π, γ) .